經(jīng)典射電望遠(yuǎn)鏡的基本原理是和光學(xué)反射望遠(yuǎn)鏡相似,投射來的電磁波被一精確鏡面反射后,同相到達(dá)公共焦點(diǎn)。用旋轉(zhuǎn)拋物面作鏡面易于實(shí)現(xiàn)同相聚焦,因此,射電望遠(yuǎn)鏡天線大多是拋物面。射電望遠(yuǎn)鏡表面和一理想拋物面的均方誤差如不大于λ/16~λ/10,該望遠(yuǎn)鏡一般就能在波長大于λ的射電波段上有效地工作。對米波或長分米波觀測,可以用金屬網(wǎng)作鏡面;而對厘米波和毫米波觀測,則需用光滑精確的金屬板(或鍍膜)作鏡面。從天體投射來并匯集到望遠(yuǎn)鏡焦點(diǎn)的射電波,必須達(dá)到一定的功率電平,才能為接收機(jī)所檢測。目前的檢測技術(shù)水平要求最弱的電平一般應(yīng)達(dá)10─20瓦。射頻信號功率首先在焦點(diǎn)處放大10~1,000倍,并變換成較低頻率(中頻),然后用電纜將其傳送至控制室,在那里再進(jìn)一步放大、檢波,最后以適于特定研究的方式進(jìn)行記錄、處理和顯示。
天線收集天體的射電輻射,接收機(jī)將這些信號加工、轉(zhuǎn)化成可供記錄、顯示的形式,終端設(shè)備把信號記錄下來,并按特定的要求進(jìn)行某些處理然后顯示出來。表征射電望遠(yuǎn)鏡性能的基本指標(biāo)是空間分辨率和靈敏度,前者反映區(qū)分兩個天球上彼此靠近的射電點(diǎn)源的能力,后者反映探測微弱射電源的能力。射電望遠(yuǎn)鏡通常要求具有高空間分辨率和高靈敏度。
射電望遠(yuǎn)鏡是主要接收天體射電波段輻射的望遠(yuǎn)鏡。射電望遠(yuǎn)鏡的外形差別很大,有固定在地面的單一口徑的球面射電望遠(yuǎn)鏡,有能夠全方位轉(zhuǎn)動的類似衛(wèi)星接收天線的射電望遠(yuǎn)鏡,有射電望遠(yuǎn)鏡陣列,還有金屬桿制成的射電望遠(yuǎn)鏡!
1931年,美國貝爾實(shí)驗(yàn)室的央斯基用天線陣接收到了來自銀河系中心的無線電波。隨后美國人格羅特·雷伯在自家的后院建造了一架口徑9.5米的天線,并在1939年接收到了來自銀河系中心的無線電波,并且根據(jù)觀測結(jié)果繪制了第一張射電天圖。射電天文學(xué)從此誕生。雷伯使用的那架天線是世界上第一架專門用于天文觀測的射電望遠(yuǎn)鏡!
20世紀(jì)60年代天文學(xué)取得了四項(xiàng)非常重要的發(fā)現(xiàn):脈沖星、類星體、宇宙微波背景輻射、星際有機(jī)分子,被稱為“四大發(fā)現(xiàn)”。這四項(xiàng)發(fā)現(xiàn)都與射電望遠(yuǎn)鏡有關(guān)。
天文望遠(yuǎn)鏡的極限分辨率取決于望遠(yuǎn)鏡的口徑和觀測所用的波長??趶皆酱?,波長越短,分辨率越高。由于無線電波的波長要遠(yuǎn)遠(yuǎn)大于可見光的波長,因此射電望遠(yuǎn)鏡的分辨本領(lǐng)遠(yuǎn)遠(yuǎn)低于相同口徑的光學(xué)望遠(yuǎn)鏡,而射電望遠(yuǎn)鏡的天線又不能無限做大。這在射電天文學(xué)誕生的初期嚴(yán)重阻礙了射電望遠(yuǎn)鏡的發(fā)展。
1960年,英國劍橋大學(xué)卡文迪許實(shí)驗(yàn)室的馬丁·賴爾(Ryle)利用干涉的原理,發(fā)明了綜合孔徑射電望遠(yuǎn)鏡,大大提高了射電望遠(yuǎn)鏡的分辨率。其基本原理是:用相隔兩地的兩架射電望遠(yuǎn)鏡接收同天體的無線電波,兩束波進(jìn)行干涉,其等效分辨率最高可以等同于一架口徑相當(dāng)于兩地之間距離的單口徑射電望遠(yuǎn)鏡。賴爾因?yàn)榇隧?xiàng)發(fā)明獲得1974年諾貝爾物理學(xué)獎。
射電天文學(xué)領(lǐng)域已經(jīng)廣泛應(yīng)用長基線的干涉技術(shù),把遍布全球的射電望遠(yuǎn)鏡綜合起來,獲得了等效口徑相當(dāng)于地球直徑量級的射電望遠(yuǎn)鏡。美國建設(shè)了VLBA,歐洲建設(shè)了EVN,二者組成了國際VLBI網(wǎng)。
內(nèi)容來自百科網(wǎng)